孙斐等人在《Ecotoxicology and Environmental Safety》上发表题为“Triptolide exposure triggers testicular vacuolization injury by disrupting the Sertoli cell junction and cytoskeletal organization via the AKT/mTOR signaling pathway”的论文。
Abstract
Background
Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure.
Methods
Male mice were subjected to TP at doses of 15, 30, and 60 μg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood–testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining.
Results
TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells.
Conclusion
This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.
付旭锋和裴秀英等人在《Free Radical Biology and Medicine》上发表题为“Human umbilical cord mesenchymal stem cells alleviate chemotherapy-induced premature ovarian insufficiency mouse model by suppressing ferritinophagy-mediated ferroptosis in granulosa cells”的论文。
Abstract
Primary ovarian insufficiency (POI) in younger women (under 40) manifests as irregular periods, high follicle-stimulating hormone (FSH), and low estradiol (E2), often triggered by chemotherapy. Though mesenchymal stem cell (MSC) therapy shows promise in treating POI, its exact mechanism remains unclear. This study reveals that human umbilical cord-derived MSCs (hUC-MSCs) can protect ovarian granulosa cells (GCs) from cyclophosphamide (CTX)-induced ferroptosis, a form of cell death driven by iron accumulation. CTX, commonly used to induce POI animal model, triggered ferroptosis in GCs, while hUC-MSCs treatment mitigated this effect, both in vivo and in vitro. Further investigations using ferroptosis and autophagy inhibitors suggest that hUC-MSCs act by suppressing ferroptosis in GCs. Interestingly, hUC-MSCs activate a protective antioxidant pathway in GCs via NRF2, a stress-response regulator. Overall, our findings suggest that hUC-MSCs improve ovarian function in CTX-induced POI by reducing ferroptosis in GCs. This study not only clarifies the mechanism behind the benefits of hUC-MSCs but also strengthens the case for their clinical use in treating POI. Additionally, it opens up a new avenue for protecting ovaries from chemotherapy-induced damage by regulating ferroptosis.
付旭锋等人在《Reproduction》上发表题为“3D hUC-MSCs spheroids exhibit superior resistance to autophagy and apoptosis of granulosa cells in POF rat model”的论文。
Abstract
Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.
付旭锋和裴秀英等人在《Journal of Zhejiang University. Science. B》上发表题为“Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice”的论文。
Abstract
Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
何瑞等人在《Journal of Ethnopharmacology》上发表题为“Study on the effects and mechanisms of Wenzhong Bushen Formula in improving ovarian reserve decline in mice based on network pharmacology”的论文。
Abstract
Ethnopharmacological relevance
The Wenzhong Bushen Formula (WZBSF) is a traditional Chinese medicine empirical formula known for its effects in tonifying qi, strengthening the spleen, warming the kidneys, promoting yang, regulating blood circulation, and balancing menstruation. Clinical evidence has demonstrated its significant efficacy in treating Diminished Ovarian Reserve (DOR) by improving ovarian reserves. However, the specific pharmacological mechanisms of WZBSF remain unclear.
Aim of the study: This study aims to investigate the mechanisms by which WZBSF improves ovarian reserve decline through network pharmacology and animal experiments.
Methods and materials
WZBSF was analyzed using a dual UPLC-MS/MS and GC-MS platform. Effective components and targets of WZBSF were obtained from the TCMSP database and standardized using UniProt. Disease targets were collected from GeneCard, OMIM, PHARMGKB, and DisGeNET databases, with cross-referencing between the two sets of targets. A PPI protein interaction network was constructed using Cytoscape3.9.1 and STRING database, followed by KEGG and GO enrichment analysis using the Metascape database. Finally, an ovarian reserve decline model was established in mice, different doses of WZBSF were administered, and experimental validation was conducted through serum hormone detection, H&E staining, immunofluorescence (IF), immunohistochemistry (IHC), and Western blot analysis (WB).
Results
WZBSF shares 145 common targets with ovarian reserve decline. GO enrichment analysis revealed involvement in biological processes such as response to hormone stimulation and phosphatase binding, while KEGG analysis implicated pathways including the PI3K-AKT signaling pathway and FoxO signaling pathway. In mice with ovarian reserve decline, WZBSF restored weight gain rate, increased ovarian index, normalized estrous cycles, reversed serum hormone imbalances, restored various follicle counts, and improved ovarian morphology. Additionally, WZBSF reduced p-AKT and p-FOXO3a levels, preventing excessive activation of primordial follicles and maintaining ovarian reserve. Conclusion: WZBSF can ameliorate cyclophosphamide and busulfan-induced ovarian reserve decline, and its mechanism may be associated with the inhibition of the PI3K/AKT/FOXO3a signaling pathway.
马文智等人在《Genes (Basel)》上发表题为“Transcriptome Analysis of Key Genes Involved in the Initiation of Spermatogonial Stem Cell Differentiation”的论文。
Abstract
Purpose: The purpose of this study was to screen the genes and pathways that are involved in spermatogonia stem cell (SSC) differentiation regulation during the transition from Aundiff to A1. Methods: RNA sequencing was performed to screen differentially expressed genes at 1 d and 2 d after SSC differentiation culture. KEGG pathway enrichment and GO function analysis were performed to reveal the genes and pathways related to the initiation of early SSC differentiation. Results: The GO analysis showed that Rpl21, which regulates cell differentiation initiation, significantly increased after 1 day of SSC differentiation. The expressions of Fn1, Cd9, Fgf2, Itgb1, Epha2, Ctgf, Cttn, Timp2 and Fgfr1, which are related to promoting differentiation, were up-regulated after 2 days of SSC differentiation. The analysis of the KEGG pathway revealed that RNA transport is the most enriched pathway 1 day after SSC differentiation. Hspa2, which promotes the differentiation of male reproductive cells, and Cdkn2a, which participates in the cell cycle, were significantly up-regulated. The p53 pathway and MAPK pathway were the most enriched pathways 2 days after SSC differentiation. Cdkn1a, Hmga2, Thbs1 and Cdkn2a, microRNAs that promote cell differentiation, were also significantly up-regulated. Conclusions: RNA transport, the MAPK pathway and the p53 pathway may play vital roles in early SSC differentiation, and Rpl21, Fn1, Cd9, Fgf2, Itgb1, Epha2, Ctgf, Cttn, Timp2, Fgfr1, Hspa2, Cdkn2a, Cdkn1a, Hmga2 and Thbs1 are involved in the initiation of SSC differentiation. The findings of this study provide a reference for further revelations of the regulatory mechanism of SSC differentiation.
杨延周和裴秀英等人在《International journal of molecular sciences》上发表题为“Immp2l Deficiency Induced Granulosa Cell Senescence Through STAT1/ATF4 Mediated UPRmt and STAT1/(ATF4)/HIF1α/BNIP3 Mediated Mitophagy: Prevented by Enocyanin”的论文。
Abstract
Dysfunctional mitochondria producing excessive ROS are the main factors that cause ovarian aging. Immp2l deficiency causes mitochondrial dysfunction and excessive ROS production, leading to ovarian aging, which is attributed to granulosa cell senescence. The pathway controlling mitochondrial proteostasis and mitochondrial homeostasis of the UPRmt and mitophagy are closely related with the ROS and cell senescence. Our results suggest that Immp2l knockout led to granulosa cell senescence, and enocyanin treatment alleviated Immp2l deficiency-induced granulosa cell senescence, which was accompanied by improvements in mitochondrial function and reduced ROS levels. Interestingly, redox-related protein modifications, including S-glutathionylation and S-nitrosylation, were markedly increased in Immp2l-knockout granulosa cells, and were markedly reduced by enocyanin treatment. Furthermore, STAT1 was significantly increased in Immp2l-knockout granulosa cells and reduced by enocyanin treatment. The co-IP results suggest that the expression of STAT1 was controlled by S-glutathionylation and S-nitrosylation, but not phosphorylation. The UPRmt was impaired in Immp2l-deficient granulosa cells, and unfolded and misfolded proteins aggregated in mitochondria. Then, the HIF1α/BNIP3-mediated mitophagy pathway was activated, but mitophagy was impaired due to the reduced fusion of mitophagosomes and lysosomes. The excessive aggregation of mitochondria increased ROS production, leading to senescence. Hence, Enocyanin treatment alleviated granulosa cell senescence through STAT1/ATF4-mediated UPRmt and STAT1/(ATF4)/HIF1α/BNIP3-mediated mitophagy.
张淑雅等人在《Biochemical and Biophysical Research Communications》上发表题为“Application of small animal ultrasound imaging technology for identification of polycystic ovary syndrome in a mouse model”的论文。
Abstract
Background and Aims
Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age, characterized by irregular menstrual periods, elevated levels of androgens, and polycystic ovaries, leading to various symptoms and complications such as infertility, metabolic issues, and increased risk of diabetes and heart disease. This study aimed to compare traditional histological methods and ultrasound imaging for consistency in identifying PCOS in a mouse model. The shortest time to construct the PCOS model using letrozole was determined.
Methods
Female C57/BL mice were randomly divided into three groups: Group A received normal saline and a regular diet; Group B received 1 mg/kg/day of letrozole with a regular diet; and Group C received 1 mg/kg/day of letrozole with a high-fat diet. All mice were administered letrozole by intragastric gavage daily for five weeks. The traditional identification method included measuring body weight, examining vaginal smears, monitoring the estrous cycle, measuring serum androgen levels, and performing H&E staining of ovarian tissues. The PCOS model was evaluated using ultrasound imaging to identify and monitor follicles. The significance of the difference between the traditional identification method and the ultrasonic method was calculated using the nonparametric McNemar test, and consistency between the two methods was assessed with the kappa-coefficient test. On this basis, the ultrasound imaging technology was used to monitor the model-making process for 2, 3 and 4 weeks, and to monitor the parameters of the ovary and follicles to judge the shortest time that gavage letrozole caused the appearance of vesicular follicles in the mouse ovary.
Results
The traditional identification method showed no PCOS phenotype in group A mice, while groups B and C showed multiple ovarian cystic follicles, indicating successful model induction. The ultrasound imaging results were consistent with the traditional method, showing no PCOS in group A and multiple cystic follicles in groups B and C. The McNemar test revealed no significant difference between the traditional and ultrasonic identification methods. The kappa-coefficient test assessed consistency, yielding a value of 0.903, indicating strong agreement between the methods. The ovarian area, diameter, and the number and diameter of cystic follicles were not significantly changed at two weeks in the letrozole group compared with the control group. At three weeks, there were significant increases in the number and in the diameter of vesicular follicles compared with control cells. At four weeks, the number and diameter, the maximum cross-sectional area and diameter of the ovary were significantly increased compared with the control group.
Conclusions
The ultrasound and traditional methods provide consistent results for identifying PCOS in a mouse model. Construction of the PCOS model by letrozole gavage takes at least three weeks.
许博和裴秀英等人在《Ecotoxicology and Environmental Safety》上发表题为“A novel perspective on di-hexyl phthalate (2-ethylhexyl)-induced reproductive toxicity in females: Lipopolysaccharide synergizes with mono-2-ethylhexyl ester to cause inflammatory apoptosis rather than autophagy in ovarian granulosa cells”的论文。
Abstract
Di-hexyl phthalate (2-ethylhexyl) (DEHP) has been confirmed to cause female reproductive toxicity in humans and model animals by affecting the survival of ovarian granulosa cells (GCs), but the interrelationships between DEHP's on autophagy, apoptosis, and inflammation in GCs are not clear. Our previous study demonstrated that DEHP exposure resulted in the disturbance of intestinal flora associated with serum LPS release, which in turn led to impaired ovarian function. LPS has also been shown to determine cell fate by modulating cellular autophagy, apoptosis, and inflammation. Therefore, this study investigated the role and link between LPS and autophagy, apoptosis, and inflammation of GCs in DEHP-induced ovarian injury. Here, we constructed an in vivo injury model by continuous gavage of 0–1500 mg/kg of DEHP in female mice for 30 days and an in vitro injury model by treatment of human ovarian granulosa cells (KGN) cells with mono-2- ethylhexyl ester (MEHP, an active metabolite of DEHP in vivo). In addition, the expression of relevant pathway molecules was detected by immunohistochemistry, immunofluorescence, qRT-PCR, and Western blotting after the addition of the autophagy inhibitor 3-methyladenine (3-MA), the apoptosis inhibitor Z-VAD- FMK and the NF-κB inhibitor BAY11-7082. The current study found that autophagy and apoptosis were significantly activated in GCs of DEHP-induced atretic follicles in vivo and found that MEHP-induced KGN cells autophagy and apoptosis were independent and potentially cytotoxic of each other in vitro. Further studies confirmed that DEHP exposure resulted in LPS release from the intestinal tract and entering the ovary, thereby participating in DEHP-induced inflammation of GCs. In addition, we found that exogenous LPS synergized with MEHP could activate the NF-κB signaling pathway to induce inflammation and apoptosis of GCs in a relatively prolonged exposure condition. Meanwhile, inhibition of inflammatory activation could rescue apoptosis and estrogen secretion function of GCs induced by MEHP combined with LPS. These results indicated that the increased LPS influenced by DEHP might cooperate with MEHP to induce inflammatory apoptosis of GCs, an important cause of ovarian injury in mice.
俞晓丽和裴秀英等人在《Natural Product Research》上发表题为“Effects of trigonelline, diosgenin, and Cistanche deserticola polysaccharide on the culture of female germline stem cells in vitro”的论文
Abstract
Female germline stem cells (FGSCs) are renewable sources of oocytes that play an indispensable role in re-establishing mammal fertility. Here, we have established FGSCs from neonatal mice, which exhibit characteristics of germline stem cells. We show that compared with monomeric trigonelline and diosgenin, macromolecular compounds Cistanche deserticola polysaccharides (CDPs) in Chinese herbal medicine can enhance the ability of FGSCs to differentiate into oocytes at appropriate concentrations while maintaining self-renewal in vitro. In contrast, trigonelline and diosgenin inhibited the expression of germ cell-specific genes while reducing cell proliferation activity. In summary, CDPs could induce the differentiation and self-renewal of FGSCs in vitro. The comparison of the effects of the active components of different types of Chinese medicine will provide a reference for the development of clinical drugs in the future, and help to elucidate the development process of FGSCs.
付旭锋等人在《International Journal of Biological Macromolecules》上发表题为“Lycium barbarum polysaccharide alleviates ferroptosis in Sertoli cells through NRF2/SLC7A11/GPX4 pathway and ameliorates DEHP-induced male reproductive damage in mice”的论文。
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is a common plasticizer that has been shown to significantly negatively affect male reproductive health. On the other hand, Lycium barbarum polysaccharide (LBP) has been shown to improve reproductive function. Therefore, we hypothesized that LBP may ameliorate DEHP-induced male reproductive damage. Herein, we found that LBP could alleviate DEHP-induced testicular damage and sperm abnormalities. Furthermore, histomorphological analysis of mice testis revealed that LBP primarily ameliorated the DEHP-induced male reproductive damage by targeting Sertoli cells. Moreover, the detection of the function-related genes of Sertoli cells confirmed this finding. The serum of mice in the Control, DEHP, and DEHP+LBP groups was analyzed using non-targeted metabolomics to further elucidate the mechanism of action of LBP in improving DEHP-induced male reproductive damage. According to the results, the differential metabolites were mainly enriched in the glutamate metabolism pathway, implying that LBP may alleviate the ferroptosis-related DEHP-induced testicular injury. Related ferroptosis markers were also found in mice testis. These findings collectively suggest that LBP may ameliorate DEHP-induced testicular injury via alleviating ferroptosis in Sertoli cells. To clarify the specific mechanism, we constructed a cell model in vitro by treating TM4 cells (the Sertoli cell line) with LBP and MEHP (the in vivo DEHP metabolite). Our findings revealed that LBP can improve the function of DEHP-affected Sertoli cells. Furthermore, the analysis of lipid peroxidation, Fe2+ content, and ferroptosis-related protein expressions demonstrated that LBP could ameliorate MEHP-induced ferroptosis in TM4 cells. To clarify the specific mechanism, glutamate metabolism-related proteins involved in the ferroptosis pathway were detected. According to the results, there were significant changes in the expression of NRF2, SLC7A11 and GPX4 proteins, which are involved in the ferroptosis glutamate metabolism pathway. Furthermore, supplementation of NRF2, SLC7A11, and GPX4 inhibitors (ML385, Erastin, and RSL3, respectively) blocked the therapeutic effect of LBP in alleviating MEHP-induced ferroptosis in TM4 cells, implying that LBP could also ameliorate MEHP-induced ferroptosis via the NRF2/SLC7A11/GPX4 pathway. In summary, these findings show that LBP can alleviate DEHP/MEHP-induced ferroptosis through the NRF2/SLC7A11/GPX4 pathway, ameliorating Sertoli cell dysfunction and improving the DEHP-induced male reproductive damage. Therefore, the clinical administration of LBP could be an effective strategy for preventing DEHP-induced male reproductive injury.